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ABSTRACT 

If thermal analysis is considered as a part of solid-state physics, inevitable problems of 
heterogeneity, transport phenomena, etc., occur. Even the recent oversimplified approach 

based on a primitive approximation of two independent, single-parameter functions is not 
without difficulty, particularly when readily available data-handling by computers is com- 
bined with an inadequate mathematical procedure. In addition, the apparatus response is 
worthy of analysis as the reaction rate is not always identifiable from changes in experimen- 
tally detected parameters. 

INTRODUCTION 

Thermal analysis is generally an exercise in solid-state physics and, as 
such, it has to deal with most of the difficulties in this field, namely the 
individuality of the structure under observation, the role of heterogeneity, 
transport phenomena, etc. In such a situation, thermoanalytical studies of 
kinetics have three possibilities: (1) to seek a more or less exact mathemati- 
cal model of the physical process going on in the sample; (2) to give up all 
physical considerations and to look merely for a sufficiently flexible descrip- 
tion function that could be fitted to most of the experimental curves; and (3) 
to be restricted to very simple approximations as usually used for engineer- 
ing purposes or process optimization. 

In the first instance, we usually encounter serious difficulties even when 
formulating the model, not to mention the curve-fitting problem, which may 
be tedious even on a medium-sized computer. In the second instance, only a 
different form of data storage is obtained, which can have some merit but is 
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devoid of any physical meaning. In the third instance, we obtain some 
physical meaning from the results without being sure they really make sense; 
however, we can easily handle these simple functions, sometimes even 
manually. This seems to be the reason for their general attractiven~s as 
popularized in early kinetic studies (cf., ref. 1). Some recent investigations 
have indicated, however, that even here some difficulties arise, particularly 
concerning the applicability of mathematical models describing the kinetics 
of non-isothermal heterogeneous processes, if [1,2]: (1) they are derived for 
homogeneous-Ike systems (i.e., the colon concept of reaction order); (2) 
they are derived under isothermal conditions (equations named classically 
after individual authors such as Jander, Avrami and JMAKY; (3) they are 
not desensitized by mathematical treatment (e.g., popular logarithmization); 
and (4) they overlap each other (diffusion with phase-boundary reactions, 
indi~du~ forms of nucleation-~owth equations in their integral forms). 

GENERAL APPROACH 

To outline the situation in broad terms, let us consider that we measure 
some integral effect 0, which is some function of the conversion of physico- 
chemical processes going on in the sample, of temperature T, and at time t, 
i.e., 

Q@=J@({ ix,(x))T(x)t) dx 
El 

(1) 

where the operator D is mostly a/at, Q, is some function (the integral of 
which is taken over the whole volume), x is the general coordinate and 
a,( X) is the conversion of the ith process at the point X. In most practical 
studies only a single process is considered, which is certainly an oversimplifi- 
cation [3]. Addition~y, both (Y and T are considered to be independent of 
X, i.e., material and energy transport are ignored, the underlying idea being 
that some mean value of cu and T can be considered. However, there are 
some doubts about this; for example, the temperature measured at one point 
is freely attributed to the weight loss effective at the surface, which is 
evidently far from the ideality. In fact, the transport equation 

a@(-& t)/at = v [K v@(x, t)] + n(X, t) - l(X, t> (2) 
(where 6 is either the temperature or concentration of the transported 
species, K is the transport coefficient and 77 and [ are the source and ditch 
functions, respectively) should be contained in our model in some way. 
Zajanchovski and Dambelkane [4] argued that heat transport should be 
considered in the analysis of a de~vatograp~c experiment. This is certainly 
not a new idea but, nevertheless, is a valuable one. Unfortunately, they 
failed to demonstrate by simulation and/or experiment the net effect of the 
experimental conditions and thus the heat transport can have a value as 
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constants obtained by analysis. Actually, the only method in which 0 is 
connected with a in a simple manner is DSC and, with some qualification, 
TG or some electromagnetic measurements, but certainly not DTA, EGD or 
ETA. DTA, however, is the only method in which the deviation of the 
temperature from the programmed and so far idealized value (frequently 
taken for our kinetic evaluations) is clearly exhibited [S]. 

SIMPLIFIED APPROACH 

Most tbermo~alysts, however, seem unconcerned by eqns. (1) and (2). 
The direct correspondence of 0 with a, the use of the mean values of a and 
T, the idealized course of T and, in addition, the general belief of the 
separability of a and T, namely the form of expressing the reaction rate 
iu = (da/di) [6,7]: 

&=k(T)f(a) (3) 

is almost a dogma in routine kinetic analysis. All this leads to complicated 
questions; however, leaving all aspects of energy transport aside, the simple 
fact of self-cooling and/or self-heating due to reaction heat absorption 
and/or production is worthy of consideration because T and a become 
really interdependent. Also, the Arrhenius form of the rate constant, k(T) 
= K, exp( - E/RT), is accepted without question, which is justified only for 
a random dist~bution of energy states, i.e., the Boltzmann distribution [S]. 
Let us take an ideal crystal with its vibration modes as an example of other 
possibilities. It has been known for some time that using these relationships, 
the so-called kinetic compensation effect [8-lo] is observed in the kinetics of 
many solid-state reactions. In general, this effect consists of an overt linear 
dependence between In K, and E or, in other words, in the uncertainty of 
the actual values of both quantities. After some heated debate, it seems to be 
agreed that the main cause of the relationship [lo] 

In K0=a+6E (4) 

may be the mathematical form of the Arrhenius equation or, using the 
Arrhenius equation, the change in In K, will have an analogous effect on 
the curve shape/position to that of E, clearly demonstrated as early as 1966 
[ll]_ This mathematical fact cannot be removed by any type of kinetic 
treatment or evaluation procedure; there are, however, ways of minimizing 
its adverse effect, often re-examined during the past 20 years. One of the 
most promising approaches is the normalization of the Arrhenius equation 
by introducing the centred temperature To to hold k(T) = K, exp[ - E/R( T 
- To)] [12-141. The above equation was entered from a slightly new angle 
by Levchik et al. [15]. Starting from geometrical and statistical considera- 
tions, they illustrated their earlier method of obtaining invariant parameters 
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consisting of a suitable transformation of variables. Equation (3) suggests, 
for easier work, the linearization In ti = In K, - E/RT + ln(f( a)) [6,7,9,16]. 
Vyazovkin and Lesnikovich [17] argued, however, that such a procedure 
reduces the sensitivity of the analysis to the variation of f(a) and, as a 
consequence, to the difference between various mechanisms, as is well 
known [1,5,16]. Such a poor sensitivity, however, seems to apply even to 
non-linear regression analysis. This appears to be especially the case in the 
common least-squares method. Here, we minimize the function 

(5) 

where (Y, exp is the experimentally obtained conversion at the ith point, $ is 
the heating rate and F is the obvious transform of f(a) in eqn. (3). Extensive 
work has been carried out on the numerical aspects of this, and efficient 
computer programs have been devised in various laboratories. In our opin- 
ion, one of the most reliable algorithms seems to be the Fortran procedure 
FUMILI, which is a co-product of nuclear scientists in Dubna (U.S.S.R.) 
and CERN (Switzerland) and is available in several computer libraries. 
Naturally, in any optimization procedure there arises the problem of experi- 
mental errors. At this conference, Militkjr and Cap [18] considered this 
problem in greater detail regarding the additive and multiplicative errors in 
the experimentally established values of the Arrhenius k(T). They suggested 
an improved method of parameter estimation that maximizes their reliability 
by means of power transformation. 

COMPUTER ANALYSIS AND MATHEMATICAL TREATMENT 

The use of computers is, however, far from common in routine thermo- 
analytical work as yet. This is why new studies dealing with more direct 
methods of curve characterization and parameter estimation continue to 
appear. Pokol et al. [19], for example, simulated the course of eqn. (3) with 
the simple function f(a) = (1 - (II)” and found an almost linear dependence 
of the DSC peak position and the width parameter on the activation energy 
for given K, and n. With everything else fixed, changes in K, lead to a 
moderately curved plot, changes in n leaving the position almost unaffected 
but having a pronounced effect on the width. These results, which are in 
agreement with those of K?iZ [20], can thus be used for the first estimation 
of the parameters provided that the master equation holds. VarhCgyi et al. 
[21] considered the asymmetry of the curve, this time for TG, its criterion 
being chosen in a rather random manner; this idea has value if not novelty. 
By characterizing the curve shape by a small set of suitably chosen parame- 
ters before any detailed analysis, we may be able to exclude all irrelevant 
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mathematical models (mechanisms), thus avoiding wastage of computing 
time. Another approach is that of Horsak and Sestak [22], using a modified 
exponential function to fit both branches of a DTA peak to look for changes 
in associated (characteristic) constants in relation to changes in.the mecha- 
nism of the rate-controlling physico-chemical process. There is, however, an 
important difference between the analysis carried out manually and that 
carried out on a computer. In manual work, we can probably trust ourselves 
to be able to establish the shape parameter from one or two points. In a 
computer analysis, even moderate experimental errors can cause a disaster in 
this respect; therefore, more collective criteria of the curve shape should be 
chosen. Regarding the curve formally as a distribution, for instance, the first 
four of its moments, the ith moment being defined as 

CL, = / 
+mTidO(T) 

-CO 
(6) 

seems to be sufficient to express most of its important features. It is well 
known that the first moment gives the position of the most important part 
of the curve (mean value), the second its width (dispersion) and the third 
and fourth the more elusive shape properties. For a computer treatment, the 
discrete analogy of eqn. (6) may be more appropriate as 

p,= ClJ’ AQ,,/z A@, (7) 
i j 

To summarize the above considerations, we appear to have a number of 
moderately efficient algorithms for curve fitting either by computer or even 
manually. The weak point seems to be the common set of master equations 
that we use as the mathematical models. Their forced simplicity reflects the 
situation as it had been before the advent of computers and cannot be fully 
justified today. Hence, further theoretical work is called for in thermal 
analysis. 

DISCUSSION 

As shown above, the mathematical treatment of the kinetic analysis of 
thermoanalytical data is still far from being appropriate to the non-steady 
type of experimentation. There arise, however, some additional complica- 
tions not mentioned yet, particularly the response of the entire apparatus to 
the process in question. Assuming a simplified decomposition process, 
neglecting possible adverse effects due to physico-chemical events within the 
sample and its surrounding gaseous envelope, the experimentally detected 
change in a physical parameter (selected to represent the reaction under 
study) must not be generally identified with the reaction rate required for 
further kinetic evaluations (see eqn. (3)). The desired direct proportionality 
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can be roughly assumed for the thermogravimetry of daltonides (at constant 
stoichiometry of phases) but not far the case of popular DTA where, in fact, 
the measured (AT,,, ) and controlled ( TCoN) quantities interfere with each 

other ( A&r,, = ICON- TRAMPLE), complicating the proportionality by the 
effect of heat inertia [5,23]: 

4 = - &,,c,/AH - A&&r/,/AH + KC+, Ku=/,, cp) (8) 

where cp, AH, K,,, and K are heat capacity, enthalpy change, heat 
transfer coefficient and parameter (constant) function, respectively. Another 
case is that of DPA (differential pressure analysis), where the dependence of 
the pressure difference between the chambers containing the sample and the 
reference, A P, is monitored. Here the interdependence between the pressure 
and temperature (equilibrium background of the reaction) must be consid- 
ered, so that [24] 

& = (AtjT- APi’)(T,/P,)/T2 (9) 

A still different case is the measurement where the reaction chamber (x) and 
the detector (x,) are separated by a connecting tube (length h = x - x, with 
a mean flow rate of the carrier gas u). The overall volume V of gas entering 
the detector in the time interval from t to T (time delay equal to h/2u) must 
be assumed [25] to provide a reaction rate roughly proportional to the sum 
of acceleration [ ii( 7 - t)/( V, - V,)] and rate [ti( V, - V,)] terms. Neglecting 
diffusion, however, can advance the zone by a factor of two. The correct 
equation for solving the transport problem in general is very complex [26]: 

ac a2c 
x=Dax’-“ax 

da, T, f) 22 +a(x-xx,) y (10) 

requiring a solution by the method of Green functions, which is too 
complicated for everyday use. The explicit form then depends on the source 
function C( (Y, T, t) and Dirac function a( x - xS) boundary conditions and 
provides the concentration profile c(x, t) necessary for solving the conver- 
sion (Y and its rate & 
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